In the early 20th century, CF&I administrators supported what we consider to be “welfare capitalism,” in which the company made available services beyond just a job, but included a home, medical care, recreational opportunities, and education for the employees and their families. Believing that happy and contented workers would remain loyal to the company in good times and bad, John Osgood, president of the company in 1901, created the Sociological Department for “the social betterment of the workers.”
In the summer of 1901, the Sociological Department launched adult education classes to teach employees how to improve themselves and their families. Specific examples of classes for employee wives related to sewing, home decorating, and cooking classes in how to prepare nutritious and wholesome food. The program’s weekly newsletter, Camp and Plant was circulated to employees providing cultural and social information about individual and community activities, secular and religious customs of the ethnic groups that made up the CF&I community, short stories and anecdotes on various topics.
The program also brought both permanent and rotating libraries to the employees in Pueblo and in the many mining communities which were filled with books. Works included classic literature by Shakespeare and Dickens, reference manuals such as Encyclopedia Britannica and “technical manuals on engineering, mechanics and kindred subjects.” A traveling painting and sculpture collection and frequent lectures on health and hygiene were also part of the Sociological Department’s educational focus.
By 1925, the company’s partnership with the YMCA had taken responsibility of educational classes. The classes must have created quite a stir as the Steelworks Blast newspaper noted that there was such an excitement for the classes that some people signed up for two or three classes at a time. The Blast reporters urged people to stick with one class at a time to prevent fatigue and give diligence to their studies. By 1926, 350 employees were registered for regular classes. These classes, also offered to employee families, included academic and household related subjects and those to help them on the jobsite. Examples included blueprint reading, typing, mechanical drawing, and salesmanship and advertising. The cost of each class was $1 which was paid by the employee. The company paid for the balance of the $1.50 tuition.
More physical, “on the job” training through an apprentice program was also made available to company employees in November of 1925. Outlined in the Steelworks Blast, there were three reasons for the apprentice program: to bring cordial relations between workers and management, allow more men to become efficient and skilled workers, and, because of a four year work commitment following graduation, it helped hold men to their jobs with little turnover of skilled labor. Through the program, apprentices earned $0.25 per hour with a $0.05 increase each year and apprentices agreed to work worked 2,488 hours per year. At the end of four years, the apprentice earned a $100 bonus. The apprentice program at CF&I trained thousands of workers over the next five decades.
The Steelworks Museum will present a Kids’ Free Science program on Saturday, October 8, 2016 from 1:00 – 3:00pm for students in grades 3-6 and their parents.
Participants will conduct hands-on experiments relating to vision and optical illusions in the former medical dispensary, where actual eye examinations were conducted for steelworkers and their families. Participants will dissect cow eyeballs and learn eyeball anatomy in this hands on workshop. The program is sponsored by the Pueblo Day Nursery Children’s Foundation.
Although this event is free, space is limited. Please call (719) 564-9086 ext. 110 or contact us here on our website to reserve your spot.
This nail kit, dating to the 1920s or 1930s, features 13 different types and sizes of nails, brads, tacks and staples conveniently sold in one box. Created at the Pueblo plant and sold under the brand name “Colorado Nails” this nail kit could be purchased for relatively low cost at many hardware and general stores. CF&I’s commercial line of nails varied from the smallest tacks used for carpet installation to medium sized nails for hanging pictures to larger nails for roof repair and securing shingles.
During CF&I’s 121 year history, the method of steelmaking transitioned from Bessemer Converter to Blast Furnace and Open Hearth to Basic Oxygen Furnace to Electric Arc Furnaces. Blast furnaces were 50-100 foot cylinders constructed from fire bricks surrounded by a steel shell. The fire bricks inside were heat resistant, but still needed to be cooled by water to withstand temperatures exceeding 3,000◦ F. The purpose of a blast furnace was to extract the iron from the ore. To the iron other minerals would be added such as dolomite, calcite and limestone. This combination, when cooled and shaped, would result in an ingot of steel. Each furnace had four stoves, or tall round topped towers that were connected to it which supplied constant blasts of air.
The Blast Furnace steelmaking process began with a precise mixture of iron ore, limestone, and other minerals loaded into skip cars, or small trolley-like vehicles that were hoisted to the top of the furnace on a track. The contents of the skip car would be dumped into the top opening of the furnace. The stoves, full of hot air, would ignite coke, a carbon like fuel that was put into the bottom of the furnace. The carbon in the ignited coke combined with oxygen in the air blast to produce carbon monoxide. Part of this gas combined with the oxygen in the iron ore liquefying the iron ore into a purer iron. Any escaping gas and dust from the process was captured in pipes at the top of the stack known as a down-comer which was later reused in the furnaces.
Blast Furnace cast house. The slag, or waste product, would be skimmed off the top,
The hot iron would flow through the channels to the awaiting ladles for shaping and cooling, 1966
The intense heat of the combustion process would melt the iron ore and limestone inside. The newly made iron would flow throughout the furnace in channels. The iron flowed into awaiting ladle cars that either went to the pig iron casting machines or the open hearth for further processing. The purpose of the melted limestone was to combine with any waste products in the mixture to form slag. Because the iron was heavier than the slag, it would flow into the awaiting hearth and the slag would float to the top, be skimmed off and removed.
During an average month in the 1920s, each blast furnace would consume 29,000 tons of iron ore, 8,000 tons of limestone and 16,000 tons of coke. The furnaces were tapped every four hours and produced between 85 and 100 tons of metal each tap. About 2,000 tons of air was blown was blown through the furnace daily. Over 10 million gallons of water per day was necessary for cooling purposes. During these peak years of Blast Furnace use, the department employed 600-700 men, including bricklayers, laborers, ladlemen, furnace attendants, steel pourers, mechanics and electricians. Other furnace attendants closely watched each step of the process to guarantee production of the highest quality steel. An extremely technical job, workers needed to know how to maintain proper temperatures, understand how to raise or lower the carbon content of the molten metal, know the proper time to tap the furnace, and operate the many complex machines. Numerous tests were performed throughout the operation.
giving an oral history about what it was like to work in the blast furnace. 2012
The first blast furnace, “Furnace Number 1”, was “blown in” a formal ceremony in September of 1881. It was the only furnace that had two names, the formal “Furnace Number 1” furnace, was also referred to as “Betsy” in honor of the first superintendent, Daniel Jones’ daughter, Betsy.
Blast Furnaces were utilized by CF&I until the early 1980s when a more environmentally friendly and economic method of steelmaking took precedence, with the company relying more on scrap metal rather than raw product for steel production.
Throughout the late 19th and 20th century, CF&I dominated local and regional land ownership in the Western United States with land holdings and mining interests in six different states. To decide where to purchase land or where to mine, CF&I employed dozens of surveying teams to examine the land before a significant investment in time and money was made. Surveying is the process using measurement and mapping of the surrounding environment using mathematical calculations.
This mountain transit with partial vertical circle compass and Y-level were just two of many tools used by the dozens of employees who surveyed land for the company. After returning from the field, their calculations would then be given to the staff cartographers who would painstakingly draw maps detailing their findings. To learn more about the Steelworks Center map collection, contact the Steelworks Archives department at (719) 564-9086 ext. 107 or view some of the many maps from the collection on our website
http://
Donated to the Steelworks Center in 2006.
With temperatures reaching into the thousands of degrees in the steelmaking process, CF&I employees found it much safer to regulate and record accurate temperatures using a tool known as an optical pyrometer. This pyrometer, which dates to the 1940s or 1950s, measures temperature by means of calculating the intensity of the light of a particular wavelength emitted by a hot substance, such as steel. The pyrometer makes it calculations by comparing the radiation of the hot object produced with the radiation produced by a hot filament (such as a thin wire through which electricity flows, such as the wire in an old-fashioned incandescent light bulb, which glows white when it gets hot). Accurate temperatures are important in the steelmaking process to allow for scientific processes, such as carbonization, to occur.
To use the tool, the operator would look through the telescopic eyepiece, through a red filter (to protect his or her eyes) at the object they were measuring, such as a ladle full of steel. What they would see is a dull red glow from the hot object with a line of brighter light from the filament and superimposed on top of the image of the steel. The knob on the side could be turned to adjust the electric current passing through the filament. This makes the filament a bit hotter or colder and alters the light it gives off. When the filament was exactly the same brightness as the hot object they were measuring, it effectively would disappear because the radiation produced would be the same color. At that point, the operator would stop looking through the eyepiece and read the temperature on the side of the meter, recording it on a chart.
Donated to the Steelworks Center of the West by EVRAZ Rocky Mountain Steel in 2004.
An interesting advertising item used by the coal industry throughout the United States from the 1920 through the 1950s was the scatter tag. These cheap cardboard or foil covered cardboard tags were quite literally scattered in loads of stoker coal purchased by customers for domestic heating to reinforce company loyalty and reassure that the customers were receiving the brand they had purchased. Most generally they were circular in shape, although some were triangular or square.
The CF&I advertising department promoted the Diavolo domestic coal brand in many local and regional magazines and newspapers as well as in their own publications. Using a recognizable logo of three devils, their slogan promoted “CF&I Coals for More Heat.”
In 1926, CF&I touted that “it takes about 150,000 40-ton railroad cars to transport one year’s production of Diavolo Coals to market.” The signature three devils logo was used in the merchandising and sales departments. As part of the marketing effort, the company, for a time, also used logo to increase visibility of the product on the sides of trucks while in transit.